OCZ RevoDrive 3 X2 480GB PCI-E SSD Review

Author: AkG
Date: October 9, 2011
Product Name: RevoDrive 3 X2
Part Number: RVD3X2-FHPX4-480G
Warranty: 3 Years
Purchase at NCIX:
Share |

A Look at DuraWrite, RAISE and More

Let’s start with the white elephant in the room and explain why this 480GB drive is in reality a 512GB drive. The OCZ RevoDrive 3 x2 has sixty four 8GB NAND chips onboard which gives it a capacity of 512GB, but is seen by the OS as 4800GB. Manufacturers use this to help increase IOPS performance and also extend life via wear leveling (as there are always free cells even when the drive is reported as “full”) and even durability since the drive has cells in reserve it can reassign sectors to as the “older” cells die.

As we said, over-provisioning is usually for wear leveling and ITGC as it gives the controller extra cells to work with for keeping all the cells at about the same level of wear. However, this is actually not the main reason SandForce sets aside so much. Wear leveling is at best a secondary reason or even just a “bonus” as this over-provisioning is mainly for the Durawrite and RAISE technology.

Unlike other solid state drives which do not compress the data that is written to them, the SandForce controller does real time loss-less compression. The upside to this is not only smaller lookup tables (and thus no need for off chip cache) but also means less writes will occur to the cells. Lowering how much data is written means that less cells have to be used to perform a given task and this should also result in longer life and even fewer controller cycles being taken up with internal house cleaning (via TRIM or ITGC).

Longevity may be a nice side effect but the real purpose of this compression is so the controller has to use fewer cells to store a given amount of data and thus has to read from fewer cells than any other drive out there (SandForce claims only .5x is written on average). The benefit to this is even at the NAND level storage itself is the bottleneck for any controller and no matter how fast the NAND is, the controller is faster. Cycles are wasted in waiting for data retrieval and if you can reduce the number of cycles wasted, the faster an SSD will be.

Compressing data and thus hopefully getting a nice little speed boost is all well and fine but as anyone who has ever lost data to corruption in a compressed file knows, reliability is much more important. Compressing data means that any potential loss to a bad or dying cell (or cells) will be magnified on these drives so SandForce needed to ensure that the data was kept as secure as possible. While all drives use ECC, to further ensure data protection SandForce implemented another layer of security.

Data protection is where RAISE (Redundant Array of Independent Silicon Elements) comes into the equation. All modern SSDs use various error correction concepts such as ECC. This is because as with any mass produced item there are going to be bad cells while even good cells are going to die off as time goes by. Yet data cannot be lost or the end user’s experience will go from positive to negative. SandForce likes to compare RAISE to that of RAID 5, but unlike RAID 5 which uses a parity stripe, RAISE does not. SandForce does not explicitly say how it does what it does, but what they do say is on top of ECC, redundant data is striped across the array. However, since it is NOT parity data there is no added overheard incurred by calculating the parity stripe.

According to SandForce’s documentation, not only individual bits or even pages of data can be recovered but entire BLOCKS of data can be as well. So if a cell dies or passes on bad data, the controller can compensate, pass on GOOD data, mark the cell as defective and if necessary swap out the entire block for a spare from the over-provisioning area. As we said, SandForce does not get into the nitty-gritty details of how DuraWrite or RAISE works, but the fact that it CAN do all this means that it most likely is writing a hash table along with the data.

SandForce is so sure of their controller abilities that they state the chances of data corruption are not only lower than that of other manufactures’ drives, but actually approaches ZERO chance of data corruption. This is a very bold statement, but only time will tell if their estimates are correct. In the mean time, we are willing to give the benefit of the doubt and say that at the very least data corruption is as unlikely with one of these products as it is on any modern MLC drive.

Latest Reviews in Storage
March 6, 2018
The Crucial MX500 follows in the footsteps of some of the best SSDs; the MX300 and MX200. But in a very competitive market, can it even compete these days?...
February 25, 2018
It is the FASTEST SSD we've ever tested, providing unbelievable benchmark performance but the Intel Optane SSD 900P also has some very serious limitations....
January 9, 2018
Toshiba has announced the new RC100 NVMe M.2 SSD Series, which targets value-oriented gamers, DIY system builders, and system integrators....